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Abstract 
 
Conventional batch implementations of Support Vector Regression (SVR) are inefficient 

when used for applications such as online learning or cross-validation, because one must 

retrain from scratch every time the training set is modified. We introduce an Accurate 

Online Support Vector Regression (AOSVR) algorithm which efficiently updates a 

trained SVR function whenever a sample is added to or removed from the training set.  

The updated SVR function is identical to the one that would be produced by a batch 

algorithm.  Examples are presented that compare the performance of AOSVR to a batch 

algorithm in an online and in a cross-validation scenario. 

 Keywords: Accurate Online Support Vector Regression; Support Vector Regression; 

Online Time-series Prediction; Leave-one-out Cross-validation. 

 
1. Introduction 
 

Support Vector Regression (SVR) fits a continuous-valued function to data in a way 

that shares many of the advantages of support vector machine (SVM) classification. Most 

algorithms for SVR (Smola et al. 1998; Chang et al. 2002) require that training samples 

be delivered in a single batch. For applications such as online time-series prediction or 

leave-one-out cross-validation, a new model is desired each time a new sample is added 

to (or removed from) the training set. Retraining from scratch for each new data point can 



be very expensive. Approximate online training algorithms have previously been 

proposed for SVMs (Syed et al.1999; Csato et al. 2001; Gentile 2001; Graepel et al. 

2001; Herbster 2001; Li et al. 1999; Kivinen et al. 2002; Ralaivola et al. 2001). We 

propose an accurate online support vector regression (AOSVR) algorithm that follows the 

approach of (Cauwenberghs et al. 2001) for incremental SVM classification. 

This paper is organized as follows. The formulation of the SVR problem, and the 

development of the Karush-Kuhn-Tucker (KKT) conditions that its solution must satisfy, 

are presented in Section 2. The incremental SVR algorithm is derived in Section 3, and a 

decremental version is described in Section 4. Two applications of the AOSVR algorithm 

are presented in Section 5.  

 
2. Support Vector Regression and The Karush-Kuhn-Tucker conditions 

 
A more detailed version of the following presentation of SVR theory can be found in 

Smola et al. (1998). 

Given a training setT y , where {( , ), 1... }i i i= =x l N
i ∈x R , and , we construct a 

linear regression function 

iy ∈ R

 ( ) ( )Tf b= Φ +x W x                                                                                                (1) 

on a feature space F.  Here, W is a vector in F, and Φ  maps the input x to a vector in 

F. The  and b in (1) are obtained by solving an optimization problem: 
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The optimization criterion penalizes data points whose y-values differ from f (x) by more 

than ε. The slack variables, ξ and ξ *, correspond to the size of this excess deviation for 

positive and negative deviations, respectively, as shown in Figure 1. 

 

Figure 1. The ε -insensitive loss function and the role of the slack variables ξ and ξ * 
 
Introducing Lagrange multipliers α, α*, η and η*, we can write the corresponding 

Lagrangian as: 
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This in turn leads to the dual optimization problem: 
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where . Here  is a kernel function (Smola et al. 

1998). Given the solution of (3), the regression function (1) can be written: 

( ) ( ) ( , )T
ij i j i jQ K= Φ Φ =x x x x ( , )i jK x x
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The Lagrange formulation of (3) can be represented as: 
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where , , and (*)
iδ (*)

iu β are the Lagrange multipliers. Optimizing this Lagrangian leads to 

the Karush-Kuhn-Tucker (KKT) conditions:: 
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Note that β  in (6) is the same as  in (1) and (4) at optimality (Chang et al. 2002). b

Define a margin function ( )  for the iih x th sample  as: ix
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By combining (6), and (7),  can be rearranged as: ( )ih x
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According to the KKT conditions (6), at most one of  and  will be nonzero, and both 

are nonnegative. That is, 

iα *
iα
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Therefore, we can define a coefficient difference  as  
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and note that  determines both  and .  iθ iα *
iα
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Equation (11) suggests that the samples in training set T can be classified into three 

subsets. 

E Set: Error Support Vectors: { | }iE i Cθ= =  

S Set: Margin Support Vectors: { | 0 }iS i Cθ= < <                                                  (12) 

R Set: Remaining Samples:  { | 0}iR i θ= =

 
3. Incremental Algorithm 
 

The incremental algorithm updates the trained SVR function whenever a new sample 

 is added to the training set T.  The basic idea is to gradually change the coefficient 

difference corresponding to the new sample  until it meets the KKT conditions, 

while ensuring that the existing samples in T continue to satisfy the KKT conditions. In 

this section, we first derive the relation between the change of , or , and the change 

of other coefficients under the KKT conditions, and then propose a method to determine 

cx

cθ cx

cθ cθ∆



the largest allowed ∆  for each step. A pseudo-code description of this algorithm is 

provided in the Appendix.  
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3.1 Derivation of the Incremental Relations 
 

Let  be a new training sample that is added to T. We initially set  and then 

gradually change (increase or decrease) the value of  under the KKT conditions (11).  

cx 0cθ =

cθ

According to (6), (7), (8), and (11), the incremental relation between ∆ , , 

and  is given by: 
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Combining (11), (12), (13), and (14), we obtain: 
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If we define the index of the samples in the S set as: 

                                                                                                   (16) 1 2{ , ,S s s=

Equation (15) can be represented in matrix form as: 
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Define a non-S, or N set, as . Combining (11), (12), (13), 

and (18), we obtain 
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In special case, when S set is empty, according to (13) and (14), Equation (20) simplifies 

to: 
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Given , we can update  and b according to (18), and update  

according to (20). Moreover, (11) suggests that  and  are constant if 

the S set stays unchanged. Therefore, the results presented in this section enable us to 

update all the  and  given .  In the next section, we address the question of 

how to find an appropriate .  
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3.2. AOSVR Bookkeeping Procedure  
 

Equations (18) and (20) hold only when the samples in the S set do not change. 

Therefore,  is chosen to be the largest value that either can maintain the S set 

unchanged or lead to the termination of the incremental algorithm.  

cθ∆

The first step is to determine whether the change  should be positive or negative.  

According to (11), 

cθ∆

                                                           (22) ( ) ( ( )) ( ( ))c c csign sign y f sign hθ∆ = − = −x

The next step is to determine a bound on  imposed by each sample in the training 

set. To simplify exposition we only consider the case , and the case ∆  can 

be obtained similarly. 

cθ∆

0cθ∆ > 0cθ <

For the new sample , there are two cases: cx

Case 1: ( )  changes from  to , and the new sample  is added 

into S set, and the algorithm terminates. 

ch x ( )ch ε< −x ( )ch ε= −x cx

Case 2: If  increase from  to , the new sample  is added into E set, and 

the algorithm terminates.  

cθ c Cθ < c Cθ = cx

For each sample  in the set S,  ix



Case 3: If changes from iθ 0  to i Cθ< < i Cθ = , sample  changes from S set to E set; 

If changes to , sample  changes from S set to R set. 

ix

iθ 0iθ = ix

For each sample  in the set E, ix

Case 4: If changes from ( )ih x ( )ih ε>x  to ( )ih ε=x ,  is moved from E set to S set. ix

For each sample  in the set R, ix

Case 5: If changes from ( )ih x ( )ih ε<x  to ( )ih ε=x ,  is moved from R set to S set. ix

The bookkeeping procedure is to trace each sample in the training set T against these 

five cases, and determine the allowed ∆  for each sample according to (18) or (20). The 

final  is defined as the one with minimal absolute value among all the possible . 

cθ

cθ∆ cθ∆

 
3.3. Efficiently Updating R Matrix  
 

When the S set is not example, the matrix R that is used in (19) 
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we can efficiently update R without explicitly computing the matrix inverse. When the kth 
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When the new sample , or a sample x  in E set or R set, is added to S set, the new R 

can be updated as follows: 
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sample  was moved from E set or R set. In contrast, when the sample x  is the sample 

added to S set, 

ix

β  is can be obtained according to (18), and iγ  is the last element of 

defined in (20). γ

 
3.4. Initialization of the Incremental Algorithm 
 

An initial SVR solution can be obtained from a batch SVR solution, and in most cases 

that is the most efficient approach.  But it is sometimes convenient to use AOSVR to 

produce a full solution from scratch. An efficient starting point is the two-sample 

solution, which can be written analytically. Assume training set T y , 

and . The solution of (3) will be 

1 1 2 2{( , ), ( , )}y= x x

1y y≥ 2
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4. Decremental Algorithm 
 

The decremental (or “unlearning”) algorithm is employed when an existing sample is 

removed from the training set. If a sample  is in the R set, then it does not contribute to cx



the SVR solution, and removing it from the training set is trivial; no adjustments are 

needed.  If on the other hand,  has a nonzero coefficient, then the idea is to gradually 

reduce the value of the coefficient to zero, while ensuring all the other samples in training 

set continue to satisfy the KKT conditions.  

cx

) y−

The general algorithm is almost the same as the incremental algorithm except for a 

few small adjustments: 

(i) The direction of the change of is now changed to be: cθ

( ) ( ( ) ( ( )c c csign sign f sign hθ∆ = =x )cx .                                                       (27) 

(ii) There is no Case 1 because the removed need not satisfy KKT conditions.  cx

(iii) The condition in Case 2 becomes:  changing from cθ 0cθ >  to . 0cθ =

 
5. Applications 
 

The accurate online SVR (AOSVR) learning algorithm produces exactly the same 

SVR as the conventional batch SVR learning algorithm, and can be applied in all 

scenarios where batch SVR is currently employed. In this section, two particular 

applications of AOSVR are used to illustrate the particular efficiency of AOSVR for 

incremental learning. 

In both applications, experimental results are presented to compare the efficiency of 

AOSVR with that of the batch SVR. Our version of AOSVR is implemented in Matlab, 

and for the batch SVR, we used LibSVM (Chang et al. 2001), which is implemented in 

C++. This leads to an apples-and-oranges comparison, but we found the currently 

available Matlab codes for batch SVR to be prohibitively slow.  For example, although 

AOSVR should be slower than batch SVR on a batch SVR problem, we found that it took 



AOSVR 4.34 seconds to train a predictor for the 292-point sunspot yearly time-series, 

while the Matlab SVM Toolbox (Gunn 1998) took 143.06 seconds. We expect a C++ 

implementation to be faster than Matlab, so the comparison with LibSVM gives batch 

SVR an advantage – but despite this, we find that AOSVR outperforms batch SVR in the 

online scenarios presented here. 

5.1. Online Time-series Prediction 
 

In recent years, the use of SVR for time-series prediction has attracted increased 

attention (Müller et al. 1997; Fernández 1999; Tay et al. 2001). In an online scenario, one 

updates a model from incoming data and at the same time makes predictions based on 

that model. This arises, for instance, in market forecasting scenarios. Another potential 

application is the (near) real-time prediction of electron density around a satellite in the 

magnetosphere, because high charge densities can damage satellite equipment (Friedel et 

al. 2002). 

In time-series prediction, the prediction origin, denoted O, is the time from which the 

prediction is generated. The time between the prediction origin and the predicted data 

point is the prediction horizon, which for simplicity we will take as one time step.  

A typical online time-series prediction scenario can be represented as follows 

(Tashman 2000):  

(1) Given a time series { (  and prediction origin O, construct a 

set of training samples, , from the segment of time series 

), 1,2,3 }x t t =

,O BA

{ ( ), 1 }x t t O= as , where , {( ( ), ( )),O B t y t=A X 1}t B O= −

[ ]( 1) Tx t B= − + ( )y t

,O BA

( ) ( )t x tX , , and B is the embedding 

dimension of the training set . 

( 1)x t= +



(2) Train a predictor from the training set . ,( ;O BP A X)

) )

,O BA

(3) Predict x O  using ( 1+ ,ˆ( 1) ( ; ( )O Bx O P O+ = A X . 

(4) When x O  becomes available, update the prediction origin: O O . 

Then, go to (1) and repeat the above procedure. 

( 1+ ) 1= +

Note that the training set  keeps growing as O increases, so the training of the 

predictor in step (2) becomes increasingly expensive.  Therefore, many SVR-based time-

series predictions are implemented in a compromised way (Tay et al. 2001), with a fixed 

prediction origin O. That is, after the predictor is obtained, it stays fixed, and is not 

updated as new data arrives. A direct consequence of this compromise is the degrading of 

the prediction performance, which is demonstrated by the experimental results listed in 

Table 2.  

,O BA

In contrast, an online prediction algorithm, such as AOSVR, can take advantage of 

the fact that the training set is augmented one sample at a time, and the enhanced 

efficiency that an online algorithm provides is shown in the next section. 

 
5.1.1. Experiments 
 

Two experiments were performed to compare the AOSVR algorithm with the batch 

SVR algorithm. We are careful to use the same algorithm parameters for online and batch 

SVR, but since our purpose is to compare computational performance, we did not attempt 

to optimize these parameters for each data set. In these experiments, the kernel function is 

a gaussian radial basis function, 
2

exp( )i j− −X X , the regularization coefficient C and 

the insensitivity parameter ε in (2) are set to 10 and 0.1 respectively, and the embedding 

dimension, B, of the training , is 5. Also, we scale all the time-series to [-1,1]. ,O BA



Three widely used benchmark time-series are employed in both experiments: (a) the 

Santa Fe Institute Competition time series A (Weigend et al. 1994), (b) the Mackey-Glass 

equation with τ=17 (Mackey et al. 1977), and (c) the yearly average sunspot numbers 

recorded from 1700 to 1995. Some basic information about these time-series is listed in 

Table 1.  The SV Ratio is the number of support vectors divided by the number of 

training samples.  This is based on a prediction of the last data point using all previous 

data for training.  In general, a higher SV ratio suggests that the underlying problem is 

harder (Vapnik 1998).  

 
 

 # Data Points SV Ratio 
Santa Fe Institute 1000 4.52% 
Mackey-Glass 1500 1.54% 
Yearly Sunspot 292 41.81% 

Table 1. Information Regarding Experimental Time Series 

The first experiment demonstrates that using a fixed predictor produces less accurate 

predictions than using a predictor that is updated as new data becomes available. Two 

measurements are used to quantify the prediction performance: mean squared error 

(MSE), and mean absolute error (MAE). The predictors are initially trained on the first 

half of the data in the time-series. In the fixed case, the same predictor is used to predict 

the second half of the time-series. In the online case, the predictor is updated whenever a 

new data point is available. The performance measurements for both cases are calculated 

from the prediction and actual value of the second half data points in the time-series. As 

shown in Table 2, the online predictor outperforms the fixed predictor. We also note that 

the errors for the three time-series in Table 2 coincide with the estimated prediction 

difficulty in Table 1 based on SV Ratio. 



 
  MSE MAE 

Online 0.0072 0.0588 Santa Fe 
Institute Fixed 0.0097 0.0665 

Online 0.0034 0.0506 Mackey-
Glass Fixed 0.0036 0.0522 

Online 0.0263 0.1204 Yearly 
Sunspot Fixed 0.0369 0.1365 

Table 2. Performance Comparison For Online and Fixed Predictors 

The second experiment illustrates that AOSVR is more efficient than a batch 

implementation in the online prediction scenario. For each benchmark time-series, an 

initial SVR predictor is trained on the first 20% of the data points using a batch SVR 

algorithm. Afterwards, both AOSVR and batch SVR algorithms are employed to work in 

the online prediction mode for the remaining 80% of the data points in the time-series. 

AOSVR and the batch SVR algorithm produce exactly the same prediction errors in this 

experiment, so the comparison is only of prediction speed. The experimental results of 

the three time-series are presented in Figures 2, 3, and 4 respectively. The x-axis of these 

plots is the number of data points, to which the online prediction model is applied.    



 
Figure 2. Log and linear plots of prediction time of SFI time series 

 

Figure 3. Log and linear plots of prediction time of Mackey-Glass time series 



 

Figure 4. Log and linear plots of prediction time of yearly sunspot time series 

These experimental results demonstrate that AOSVR algorithm is generally much 

faster than the batch SVR algorithm when applied to online prediction. This is because 

the batch SVR algorithm must train a new classifier from scratch every time a new point 

is added. Comparison of Figures 3 and 4 furthermore suggests that more speed 

improvement is achieved on the sunspot data than on the Mackey-Glass. We speculate 

that this is because the sunspot problem is “harder” than the Mackey-Glass – it has a 

higher support vector ratio – and that the performance of the AOSVR algorithm is less 

sensitive to problem difficulty. 

To test this hypothesis, we compared the performance of AOSVR to batch SVR on a 

single dataset (the sunspots) whose difficulty was adjusted by changing the value of ε. A 

smaller ε leads to a higher support vector ratio and a more difficult problem. Both the 



AOSVR and batch SVR algorithms were employed for online prediction of the full time-

series. The overall prediction times are plotted against ε in Figure 5.  Where AOSVR 

performance varied by a factor of about ten over the range of ε, the batch SVR 

performance varied by a factor of almost 200. 

 
Figure 5. Log and linear plots of prediction time of yearly sunspot time series 

 
 
5.1.2. Limited-Memory Version of the Online Time-series Prediction Scenario 
 

One problem with online time-series prediction in general is the longer the prediction 

goes on, the bigger the training set  will become, and the more SVs will be involved 

in SVR predictor (Kimeldorf et al. 1971). A complicated SVR predictor imposes both 

memory and computation stress on the prediction system. One way to deal with this 

problem is to impose a “forgetting” time W. When training set  grows to this 

maximum W, then the decremental algorithm of AOSVR will be used to remove the 

oldest sample before the next new sample is added to the training set. 

,O BA

,O BA



We note that this variant of the online prediction scenario is also potentially suitable 

for non-stationary time-series, as it can be updated in real-time to fit the most recent 

behavior of the time-series. More rigorous investigation in this direction will be a future 

effort. 

 
5.2. Leave-One-Out Cross-validation 
 

Cross-validation is a useful tool for assessing the generalization ability of a machine-

learning algorithm. The idea is to train on one subset of the data, and then to test the 

accuracy of the predictor on a separate disjoint subset.  In leave-one-out cross-validation  

(LOOCV), only a single sample is used for testing, and all the rest are used for training.  

Generally, this is repeated for every sample in the dataset. When the batch SVR is 

employed, LOOCV can be very expensive, since a full retraining is done for each sample. 

One compromise approach is to approximate LOOCV by estimating some related but less 

computation-demanding factors, such as the Xi-Alpha Bound (Joachims 2000), and 

Approximate Span Bound (Vapnik et al. 1999). Although (Lee et al. 2001) proposed a 

numerical solution to reduce the computation for directly implementing LOOCV, the 

amount of computation required is still considerable. Also, the accuracy of the LOOCV 

result obtained using this method can be potentially compromised due to the special 

parameter set employed by the method.  

The decremental algorithm of AOSVR provides us with an efficient implementation 

of LOOCV for SVR:  

(1) Given a dataset D, construct the SVR function f(x) from the whole dataset D 

using batch SVR learning algorithm; 



(2) For each non-support vector xi in the dataset D, calculate error ei corresponding 

to xi as: ei = yi-f (xi), where yi is the target value corresponding to xi;  

(3) For each support vector xi involved in the SVR function f(x),  

a. Unlearn xi from the SVR function f(x) using the decremental algorithm to 

obtain the SVR function fi(x) which would be constructed from the dataset 

Di=D-{xi}; 

b. Calculate error ei corresponding to support vector xi as: ei = yi-fi(xi), where yi 

is the target value corresponding to xi.  

(4) Knowing the error for each sample xi in D, it is possible to construct a variety of 

overall measures; a simple choice is the MSE:  

21( )
N

LOOCV i
i

MSE e
N

= ∑D                                                                                 (28) 

where N is number of samples in dataset D. Other choices of error metric, such 

as MAE, can be obtained just by altering (28) appropriately. 

 
5.2.1. Experiment 
 

The algorithm parameters in this experiment are set the same as those in the 

experiments in Subsection 5.1.1. Two famous regression datasets, the auto-mpg and 

Boston housing datasets, are chosen from the UCI machine-learning repository. Some 

basic information of these datasets is listed in Table 3. 

 
 # Attributes # Samples SV Ratio 

Auto-MPG 7 392 41.07% 
Boston Housing 13 506 36.36% 

Table 3. Information Regarding Experimental Regression Datasets 



The experimental results of both datasets are presented in Figure 6. The x-axis is the 

size of the training set, upon which the LOOCV is implemented. These plots show that 

AOSVR-based LOOCV is much faster than its batch SVR counterpart when the training 

set is relatively large. 

 

 
Figure 6.  Linear plots of LOOCV time of Auto-MPG and Boston Housing dataset 

 
6. Conclusions 

 
We have developed and implemented an accurate online support vector regression 

(AOSVR) algorithm that permits efficient retraining when a new sample is added to, or 

when an existing sample is removed from, the training set. AOSVR is applied to online 

time-series prediction and to leave-one-out cross-validation, and the experimental results 



demonstrate that the AOSVR algorithm is more efficient than the conventional batch 

SVR in these scenarios. Moreover, AOSVR appears less sensitive than batch SVR to the 

difficulty of the underlying problem.  

 
Appendix 
 
Pseudo-code for Incrementing AOSVR with a New Data Sample  
 
Inputs:  

¾ Training set T y  {( , ), 1... }i i i= =x l

l¾ Coefficients { , and bias b , 1... }i iθ =

¾ Partition of samples into sets S, E, and R 

¾ Matrix R defined in (23)  

¾ New sample  ( , )c cyx

Outputs: 

¾ Updated coefficients {  and bias b , 1... 1}i i lθ = +

¾ Updated Matrix R 

¾ Updated partition of samples into sets S, E, and R 

AOSVR Incremental Algorithm: 

• Initialize  0cθ =

• Compute ( )c i ic
i E S

f Q bθ
∈ ∪

= +∑x   

• Compute   ( ) ( )c ch f= −x x cy

• If ( )ch ε≤x , then assign to R, and terminate.  cx

• Let q s  be the sign that ∆ will take ( ( ))cign h= − x cθ



• Do until the new sample  meets the KKT condition cx

o Update β,γ according to (19) and (20b) 

o Start bookkeeping procedure: 

  Check the new sample , cx

- 1 ( ( ) ) /c cL h qε cγ= − −x  (Case 1) 

-   (Case 2) 2cL qC θ= − c

  Check each sample x  in the set S (Case 3) i

- If q 0iβ >  and C , 0iθ> ≥ ( ) /S
i iL C θ iβ= −   

- If q 0iβ >  and 0 , i Cθ> ≥ − /S
i iL θ iβ= −  

- If q 0iβ <  and C , 0iθ≥ > /S
i iL θ iβ= −  

- If q 0iβ <  and 0 ,i Cθ≥ > − ( )S
i iL C θ / iβ= − −  

Check each sample  in the set E  (Case 4) ix

- ( ( ) ( ) ) /E
i i iL h sign q iβ ε β= − −x  

Check each sample  in the set R  (Case 5) ix

- i( ( ) ( ) ) /R
i i iL h sign qβ ε β= − +x  

Set 1 2min( , , , , )S E
c c cq L Lθ∆ = L L LR ,  

   where { , }S S
iL i S= ∈L , { , }E E

iL i E= ∈L , and { ,R R
i }L i R= ∈L . 

Let Flag be the case number that determines ∆ . θ

Let x  be the particular sample in T that determines . I cθ∆

o End Bookkeeping Procedure. 



o Update , b, and  according to (18)  cθ ,i i Sθ ∈

o Update  according to (20) ( ),ih i E∈ ∪x R

o Switch Flag 

            (Flag = 1): 

   Add new sample  to set S; update matrix R according to (25) cx

            (Flag = 2): 

   Add new sample  to set E cx

            (Flag = 3): 

   If , move  to set R; update R according to (24) 0Iθ = Ix

   If I Cθ = , move  to set E; update R according to (24) Ix

             (Flag = 4): 

    Move  to set S; update R according to (25) Ix

             (Flag = 5): 

    Move  to set S; update R according to (25) Ix

o End Switch Flag 

o If Flag ≤ 2, terminate; otherwise continue the Do-Loop. 

• Terminate incremental algorithm; ready for the next sample. 
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